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Abstract. Advocates for Neuro-Symbolic AI (NeSy) assert that combining deep learning with symbolic reasoning will lead to
stronger AI than either paradigm on its own. As successful as deep learning has been, it is generally accepted that even our
best deep learning systems are not very good at abstract reasoning. And since reasoning is inextricably linked to language, it
makes intuitive sense that Natural Language Processing (NLP), would be a particularly well-suited candidate for NeSy. We
conduct a structured review of studies implementing NeSy for NLP, the challenges and future directions, and aim to answer the
question of whether NeSy is indeed meeting its promises: reasoning, out-of-distribution generalization, interpretability, learning
and reasoning from small data, and transferability to new domains. We examine the impact of knowledge representation, such as
rules and semantic networks, language structure and relational structure, and whether implicit or explicit reasoning contributes
to higher promise scores. We find that knowledge encoded in relational structures and explicit reasoning tend to lead to more
NeSy goals being satisfied. We also advocate for a more methodical approach to the application of theories of reasoning, which
we hope can reduce some of the friction between the symbolic and sub-symbolic schools of AI.

Keywords: Neuro-Symbolic AI, Natural Language Processing, Knowledge Representation, Structured Review

1. Introduction

1.1. Background

At its core, Neuro-Symbolic AI (NeSy) is “the combination of deep learning and symbolic reasoning" [1]. The
goal of NeSy is to address the weaknesses of each of symbolic and sub-symbolic approaches while preserving their
strengths (see figure 1). Thus NeSy promises to deliver a best-of-both-worlds approach which embodies the “two
most fundamental aspects of intelligent cognitive behavior: the ability to learn from experience, and the ability to
reason from what has been learned"[1, 2].

Remarkable progress has been made on the learning side, especially in the area of Natural Language Processing
(NLP) and in particular with deep learning architectures such as the transformer [3]. However, these systems display
certain intrinsic weaknesses which some researchers argue cannot be addressed by deep learning alone; and that in
order to do even the most basic reasoning, we need rich representations which enable precise, human interpretable
inference via mathematical logic.
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Fig. 1. Symbolic vs Sub-Symbolic strengths and weaknesses. Based on the work of [4]

Historically, rivalry between symbolic and connectionist, or sub-symbolic, AI research has stymied collaboration
across these fields. Although it should be acknowledged that not everyone thought the two were incompatible. As
early as 1991, Marvin Minsky presciently asked “Why is there so much excitement about Neural Networks today,
and how is this related to research on Artificial Intelligence? Much has been said, in the popular press, as though
these were conflicting activities. This seems exceedingly strange to me, because both are parts of the very same
enterprise” [5].

More recently, a discussion between Gary Marcus and Yoshua Bengio at the 2019 Montreal AI Debate prompted
some passionate exchanges in AI circles, with Marcus arguing that “expecting a monolithic architecture to handle
abstraction and reasoning is unrealistic", while Bengio defended the stance that “sequential reasoning can be
performed while staying in a deep learning framework"[6].

Spurred by this discussion, and almost ironically, by the success of deep learning (and ergo, the clarity into its
limitations), research into hybrid solutions has seen a dramatic increase (see figure 2). At the same time, discussion
in the AI community has culminated in “violent agreement" [7] that the next phase of AI research will be about
“combining neural and symbolic approaches in the sense of NeSy AI [which] is at least a path forward to much
stronger AI systems" [8]. Much of this discussion centers around the ability (or inability) of deep learning to reason,
and in particular, to reason outside of the training distribution. Indeed, at IJCAI 2021, Yoshua Bengio affirms that
“we need a new learning theory to deal with Out-of-Distribution generalization" [9]. Bengio’s talk is titled “System 2
Deep Learning: Higher-Level Cognition, Agency, Out-of-Distribution Generalization and Causality". Here, System
2 refers to the System 1/System 2 (S1/S2) dual process theory of human reasoning developed by psychologist and
Nobel laureate Daniel Kahneman in his 2011 book “Thinking, Fast and Slow" [10]. AI researchers have drawn many
parallels between the characteristics of sub-symbolic and symbolic AI systems and human reasoning with S1/S2.
Broadly speaking, sub-symbolic (neural, deep-learning) architectures are said to be akin to the fast, intuitive, often
biased and/or logically flawed S1. And the more deliberative, slow, sequential S2 can be thought of as symbolic or
logical. But this is not the only theory of human reasoning as we’ll discuss later in this paper.

1.2. Reasoning & Language

“Language understanding in the broadest sense of the term, including question answering that requires
commonsense reasoning, offers probably the most complete application area of neurosymbolic AI"[1]. This makes
a lot intuitive sense from a linguistic perspective. If we accept that language is compositional, with rules and
structure, then it should be possible to obtain its meaning via logical processing. Compositionality in language was
formalized by Richard Montague in the 1970s, in what is now referred to as Montague grammar. “The key idea
is that compositionality requires the existence of a homomorphism between the expressions of a language and the
meanings of those expressions."1 in other words, there is a direct relationship between syntax and semantics. This is

1https://plato.stanford.edu/entries/compositionality/

https://plato.stanford.edu/entries/compositionality/
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Fig. 2. Number of Neuro Symbolic articles published since 2010, normalized by the total number of all Computer Science articles published
each year. The figure represents the unfiltered results from Scopus given the search keywords described in section 2.2.

in line with Noam Chomsky’s Universal grammar which states that there is a structure to natural language which is
innate and universal to all humans regardless of cultural differences. The challenge lies in representing this structure
in a way that both captures the semantics and is computationally efficient.

On the one hand, distributed representations are desirable because they can be efficiently processed by gradient
descent (the backbone of deep learning). On the other, the meaning embedded in a distributed representation is
difficult if not impossible to decompose. So while a large language model (LLM) may be very good at making
certain types of predictions, it is not able to provide an explanation of how it got there. We’ve also seen that the
larger the model - more parameters as well as more training data - the better the predictions. But even as these
models get infeasibly large, they still fail on tasks requiring basic commonsense. The example in Figure 3, given by
Marcus and Davis in [11] is a case in point.

You are having a small dinner party. You want to serve dinner in the living room. The dining room table is wider than the
doorway, so to get it into the living room, you will have to remove the door. You have a table saw, so you cut the door in half
and remove the top half.

Fig. 3. GPT3 text completion example. The prompt is rendered in regular font, while the GPT3 response is shown in bold [11].

On the other hand, traditional symbolic approaches have also failed to capture the essence of human reasoning.
We don’t need a scholar to confirm that everyday commonsense reasoning is nothing like the rigorous mathematical
logic whose goal is validity. But even when the objective isn’t commonsense, but rather tasks which require precise,
deterministic answers such as expert reasoning or planning, traditional symbolic reasoners are slow, cumbersome,
and computationally intractable at scale. Description Logics (DLs) such as OWL, for example, are used to reason
over ontologies and knowledge graphs (KGs) on the Web. However, one must accept a harsh trade-off between
expressivity and complexity when choosing a DL flavor. Improving the performance of reasoning over ontologies
and knowledge graphs that power search and information retrieval across the Web is particularly relevant to the
Semantic Web community. Hitzler et al. report on the current research in this area [12].

1.3. Contributions

Several surveys have already been conducted which cover the overall NeSy landscape going as far back as 2005,
and as recently as 2021, so we will not attempt to replicate that here [1, 4, 8, 13–25]. In fact, our understanding of
the field is guided by the works of these scholars. For a succinct overview we refer the reader to [8]. And for a more
in-depth analysis we recommend [4]. Our aim is to synthesize recent work implementing NeSy in the language
domain, and to verify if the goals of NeSy are being realized, what the challenges are, and future directions. To our
knowledge this is the first attempt at this specific task. In the following sub sections, we briefly describe each of the
following goals. These are similar to the benefits described in [8]:
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1. Out-of-distribution Generalization
2. Interpretability
3. Reduced size of training data
4. Transferability
5. Reasoning

1.3.1. Out-of-distribution (OOD) Generalization
OOD generalization refers to the ability of a model to extrapolate to phenomena not previously seen in the training

data. The lack of OOD generalization in LLMs is often demonstrated by their inability perform commonsense
reasoning, as in the example in figure 3.

1.3.2. Interpretability
As Machine Learning (ML) and AI become increasingly embedded in daily life, the need to hold ML/AI

accountable is also growing. This is particularly true in sensitive domains such as healthcare, legal, and some
business applications such as lending, where bias mitigation and fairness are critical. These concerns, among others,
are the province of Explainable AI (XAI). XAI can be broken down into three main categories:

1. Explainability - the facility for an expert human to see how a model arrived at a prediction or inference - often
represented as a set of rules derived from the model. It seeks to answer the question: How does the model
work?

2. Interpretability - the facility for a non-expert human to see how the data used by the model led to a prediction
or inference, usually in the form of a cause and effect articulation. It seeks to answer the question: Why did the
model come to this conclusion?

3. Interactivity - the facility for a human to interrogate the model about counterfactuals. It seeks to answer the
question: What would happen if the data was different?

In the literature, sometimes the term interpretability is used in place of explainability and vice versa, however, for
our purposes, all three categories are subsumed under the general notion of interpretability. XAI is made possible
by invoking an explicit reasoning module post hoc, or building interpretability into the system to begin with.

1.3.3. Reduced size of training data
SOTA language models utilize massive amounts of data for training. This can cost in the thousands or even

millions of dollars, take a very long time, and is neither environmentally friendly nor accessible to most researchers
or businesses. The ability to learn from less data brings obvious benefits. But apart from the practical implications,
there is something innately disappointing in LLMs’ ‘bigger hammer’ approach. Science rewards parsimony and
elegance, and NeSy promises to deliver results without the need for such massive scale.

1.3.4. Transferability
Transferability is the ability of a model which was trained on one domain, to perform similarly well in a different

domain. This can be particularly valuable, when the new domain has very few examples available for training. In
such cases we might rely on knowledge transfer similar to the way a human might rely on abstract reasoning when
faced with an unfamiliar situation.

1.3.5. Reasoning
According to Encyclopedia Britannica, “To reason is to draw inferences appropriate to the situation" [26].

Reasoning is not only a goal in its own right, but also the means by which the other above mentioned goals can be
achieved. Not only is it one of the most difficult problems in AI, it is one of the most contested. In section 4.1 we
examine the uses of the term reasoning in more depth.

The remainder of this manuscript is structured as follows. Section 2 describes the research methods employed for
searching and analysing relevant studies. In Section 3 we analyze the results of the data extraction, how the studies
reviewed fit into Henry Kautz’s NeSy taxonomy, and propose a simplified nomenclature for describing Kautz’s
NeSy categories. Section 4 discusses various existing challenges to implement NeSy. Section 5 presents limitations
of the work and future directions of NeSy in NLP followed by conclusion in Section 6.
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2. Methods

Our review methodology is guided by the principles described in [27–29].

2.1. Research Questions

1. What are the existing studies on neurosymbolic AI (NeSy) in natural language processing (NLP)?
2. What are the current applications of NeSy in NLP?
3. How are symbolic and sub-symbolic techniques integrated and what are the advantages/disadvantages?
4. What are the challenges for NeSy and how might they be addressed (including existing proposals for future

work)?
5. What areas of NLP might be likely to benefit from the NeSy approach in the future?

2.2. Search Process

We chose Scopus to perform our initial search, as Scopus indexes all the top journals and conferences we were
interested in. This obviously precludes some niche publications and it is possible we missed some relevant studies.
As our aim is to shed light on the field generally, our assumption is that the top journals are a good representation of
the research area as a whole. Since we were looking for studies which combine neural and symbolic approaches, our
query consists of combinations of neural and symbolic terms as well as variations of neuro-symbolic terms, listed
in table 1:

Table 1
Search Keywords

Neural Terms Symbolic Terms Neuro-Symbolic Terms

sub-symbolic symbolic neuro-symbolic
machine learning reasoning neural-symbolic
deep learning logic neuro symbolic

neural symbolic
neurosymbolic

The initial query was restricted to peer-reviewed English language journal articles from the last 10 years and
conference papers from the last 3 years, which produced 2,412 results. The query and additional details can be found
in our github repository 2

2.3. Study selection process

We further limit the journal articles to those published by the top 20 publishers as ranked by Scopus’s CiteScore,
which is based on number of citations normalized by the document count over a 4 year window3, and SJR (SCImago
Journal Rank), a measure of prestige inspired by the PageRank algorithm over the citation network4, the union of
which resulted in 29 publishers, and eliminated 669 articles, for a total of 1,510 journal articles and 232 conference
papers for screening. Two researchers independently screened each of the 1,742 studies (articles and conference
papers), based on the inclusion/exclusion criteria in Table 2. An overview of the selection process can be seen in
Figure 4.

The first round of inclusion/exclusion was performed on the titles and abstracts of the 1,742 studies (1,510 articles
and 232 papers) from the above identification step. The inclusion criteria at this stage was intentionally broad, as
the process itself was meant to be exploratory, and to inform the researchers of relevant topics within NeSy.

2https://github.com/kyleiwaniec/neuro-symbolic-ai-systematic-review
3https://service.elsevier.com/app/answers/detail/a_id/14880/kw/citescore/supporthub/scopus/
4https://service.elsevier.com/app/answers/detail/a_id/14883/supporthub/scopus/related/1/

https://github.com/kyleiwaniec/neuro-symbolic-ai-systematic-review
https://service.elsevier.com/app/answers/detail/a_id/14880/kw/citescore/supporthub/scopus/
https://service.elsevier.com/app/answers/detail/a_id/14883/supporthub/scopus/related/1/
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Table 2

Inclusion/Exclusion Criteria

Inclusion Exclusion

Input format: unstructured or semi structured text Input format: not text data, namely: images, speech,
tabular data, categorical data, etc.

Output format: Any Application: Theoretical Papers, Position Papers, Surveys
(in other words, not implementations)

Application: Implementation The search keywords match, but the actual content does
not

Language: English Full text not available (Authors were contacted in these
cases)

Fig. 4. Selection Process Diagram

This unsurprisingly led to some signi�cant researcher disagreement on inclusion, especially since studies need
not have been explicitly labeled as neuro-symbolic to be classi�ed as such. Agreement between researchers can be
measured using the Cohen Kappa statistic, with values ranging from [-1,1], where 0 represents the expected kappa
score had the labels been assigned randomly, -1 indicates complete disagreement, and 1 indicates perfect agreement.
Our score at this stage came to a rather low 0.33. Since this measure is not particularly intuitive, we include a Venn
diagram of the number of studies included by each researcher - see Figure 5.

Fig. 5. Researcher Agreement Overlap.

To better understand the disagreement and researcher biases, we do an analysis on the term frequency - inverse
document frequency (TF-IDF) of one-, bi-, and tri-grams on each of the three areas of the venn diagram: studies
included by researcher 1 only, studies included by researcher 2 only, and studies included by both researchers.
We calculated the TF-IDF from the abstracts of each of the three groupings, and generated word clouds. At a
glance, it appears that researcher 1 chose to include documents where terms related to the symbolic dimension
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such as “symbolic", “rules", and general terms such as “framework", and “data" appeared more frequently, whereas
researcher 2, leaned towards terms along the neural dimension such as “deep learning", “neural", and “networks".
Given the academic background of each researcher, we reasoned that the discrepancy was due to bias towards each
individual's area of research. In the third grouping, where both researchers agreed on inclusion, a more balanced
distribution can be seen with the terms “symbolic", “arti�cial", and “neural" carrying similar weight. (See Figure
6.)

figures/eps/R1_cloud-eps-converted-to.pdf

(a)
Researcher

1

(b) Intersection (c) Researcher 2

Fig. 6. TF-IDF Word Clouds

We observed that it was not always clear from the abstract alone whether the sub-symbolic and symbolic methods
were integrated in a way that meets the inclusion criteria, which may also have led to disagreement.

To facilitate the next round of review, we kept a shared glossary of symbolic and sub-symbolic concepts as
they presented themselves in the literature. We each reviewed all 337 studies again, this time skimming the studies
themselves. Any disagreement at this stage was discussed in person with respect to the shared glossary. This process
led to the elimination of many studies for a �nal count of 75 studies marked for the next round of review.

2.4. Quality Assessment

The quality of each study was determined through the use of a nine-item questionnaire. Each question was
answered with a binary value, and the study's quality was determined by calculating the ratio of positive answers.
Studies with a quality score below 50% were excluded.

Quality Questions:

1. Is there a clear and measurable research question?
2. Is the study put into context of other studies and research, and design decisions justi�ed accordingly?

(Number of references in the literature review/ introduction)
3. Is it clearly stated in the study which other algorithms the study's algorithm(s) have been compared with?
4. Are the performance metrics used in the study explained and justi�ed?
5. Is the analysis of the results relevant to the research question?
6. Does the test evidence support the �ndings presented?
7. Is the study algorithm suf�ciently documented to be reproducible? (independent researchers arriving at the

same results using their own data and methods)
8. Is code provided?
9. Are performance metrics provided? (hardware, training time, inference time)

More than 88% of the studies satisfy the requirements listed from Q1 to Q6. However, nearly 82% of the studies
fail to provide source code or details related to the computing environment which makes the system dif�cult to
reproduce. This leads to an overall reduction of the average quality score to 76.3% - see Figure 7.

Finally, each of the 34 studies selected for inclusion was evaluated, classi�ed, and data extraction was performed
for each of the features outlined in Table 3. For acceptable values of individual features see B. The lists of neural and
symbolic terms referenced in the table constitute the glossary items learned from conducting the selection process.
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Fig. 7. Study quality

Figure 8(a) shows the breakdown of conference papers vs journal articles, and Figure 8(b) shows the number of
studies published each year. As evidenced by the graph, interest in NeSy has increased signi�cantly since 2019 for
NLP even more dramatically than the much more steady incline of interest in NeSy overall.

(a) Publication type (b) Published year

Fig. 8. Publications selected for inclusion

3. Results, Data analysis, Taxonomies

In this section, we perform quantitative data analysis based on the extracted features in Table 3. Each study was
labeled with terms from the aforementioned glossary, and each term in the glossary was classi�ed as either symbolic,
or neural. A bi-product of this process are two taxonomies built bottom-up of concepts relevant to the set of studies
under review. The two taxonomies are a re�ection of the de�nition of NeSy provided earlier: “the combination
of deep learning and symbolic reasoning". Thus on the learning side, we have neural architectures (described in
Section 3.2.1), and on the symbolic reasoning side we have knowledge representation (described in Section 3.2.2).
These results are rendered in Table 4, with the addition of color representing a simple metric, orpromise score, for
each study. The promise score is simply the number of goals reported to have been satis�ed by the model(s) in the
study.

3.1. Exploratory Data Analysis

We plot the relationships between the features extracted from the studies, and the goals from section 1.3 in an
effort to identify any correlations between them, and ultimately to identify patterns leading to higher promise scores.
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Table 3

Data extraction features

Feature Description

Business application Real world NLP task of the proposed study

Technical application Type of model output - illustrated in Figure 9

Type of learning Indicates learning method (supervised, unsupervised, etc.)

Knowledge representation One of four categories described in Section 3.2

Type of reasoning Indicates whether knowledge is represented implicitly (embedded)
or explicitly (symbolic)

Language structure Indicates whether linguistic structure is leveraged to facilitate
reasoning

Relational structure Indicates whether relational structure is leveraged to facilitate
reasoning

Symbolic terms List of symbolic techniques used by the models

Neural terms List of neural architectures used by the models

Datasets List of all datasets considered

Model description Describes model architecture schematically

Evaluation Metrics Evaluation metrics reported by the authors

Reported score Model performance reported by the authors

Contribution Novel contribution reported by the authors

Key-intake Short description of the study

isNeSy Indicates whether the authors label their study as Neuro-Symbolic

NeSy goals For each of the goals listed in Section 1, indicates whether the goal
is met as reported by the authors

Kautz category List of categories from Kautz's taxonomy

NeSy category List of categories from the proposed nomenclature

Study quality Percentage of positive answers in the quality assessment
questionnaire

3.1.1. Business and Technical Applications
A collection of common NLP tasks is shown in Figure 9. The subset of tasks belonging to Natural Language

Understanding (NLU) and Natural Language Generation (NLG) are often regarded as more dif�cult, and presumed
to require reasoning. Given thatreasoningwas one of the keywords used for search, it is not surprising that many
studies report reasoning as a characteristic of their model(s). Also unsurprising is the fact that nearly half of the text
classi�cation studies (which do not belong to this subset) are not associated with any NeSy goals. The relationship
between all tasks, or business applications, and NeSy goals is shown in Figure 10.

The business application largely determines the type of model output, or technical application, as can be seen
in the almost one-to-one mapping in Figure 11. The exception being question answering, which has been tackled
as both an inference and a classi�cation problem. Question answering is the most frequently occurring task, and
is associated mainly with reduced data, and to a much lesser degree, interpretability. On a philosophical level this
seems somewhat disappointing, as one would hope that in receiving an answer, one could expect to understand why
such an answer was given.

For completeness, the number of studies representing the technical applications and most frequently occurring
business application is given in Figure 13, while Figure 12 combines business applications, technical applications,
and goals.



10 K. Hamilton et al. / NeSy for NLP: Review

1 1

2 2

3 3

4 4

5 5

6 6

7 7

8 8

9 9

10 10

11 11

12 12

13 13

14 14

15 15

16 16

17 17

18 18

19 19

20 20

21 21

22 22

23 23

24 24

25 25

26 26

27 27

28 28

29 29

30 30

31 31

32 32

33 33

34 34

35 35

36 36

37 37

38 38

39 39

40 40

41 41

42 42

43 43

44 44

45 45

46 46

47 47

48 48

49 49

50 50

51 51

Table 4

Neural & Symbolic Combinations
1 2 3 4 Number of NeSy goals satis�ed out of the 5 described in Section 1.3.

Note: some studies use multiple techniques.

Knowledge Representation

Frames Logic Rules
Semantic

network

Linear Models SVM [30]
[31] [32]

[33]
[34]

Early

Generations

MLP [35] [36, 37]
[38] [39]

[40]

CNN [41] [42] [37] [43] [44, 45]

Graphical

Models

DBN [42]

GNN [46] [47] [48]

Sequence-

to-Sequence

RNN
[41, 49]

[50]

[51] [52]

[42] [53]

[54] [55]

[56] [57]

[58]

[44] [59]

[45] [60]

RcNN [61] [62]

Neuro-

Symbolic

LTN [63]

RNKN [61]

Neuroevolution
[64]

Fig. 9. Common NLP tasks

3.1.2. Type of learning
Machine learning algorithms are classi�ed as supervised, unsupervised, semi-supervised, curriculum or

reinforcement learning, depending on the amount and type of supervision required during training [65–67]. Figure
14 demonstrates that the supervised method outweighs all other approaches.
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Fig. 10. Relationship between Business Applications and Goals

Fig. 11. Relationship between Business Applications and Technical Applications

Fig. 12. Relationship between Business Applications, Technical Applications, and Goals
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(a) Top Business Applications (NLP
tasks)

(b) Technical Applications (model output)

Fig. 13. Applications

Fig. 14. Relationship between Learning Type, Technical Application, and Goals

3.1.3. Implicit vs Explicit Reasoning
How reasoning is performed often depends on the underlying representation and what it facilitates. Sometimes

the representations are obtained via explicit rules or logic, but are subsequently transformed into non-decomposable
embeddings for learning. As such, we can say that any reasoning during the learning process is done implicitly.
Studies utilizing Graph Neural Networks (GNNs) [46–48] would also be considered to be doing reasoning implicitly.
The majority of the studies doing implicit reasoning leverage linguistic and/or relational structure to generate those
internal representations. These studies meet 21 out of a possible 102 NeSy goals, where 102 = #goals * #studies,
or 20.6%. For reasoning to be considered explicit, rules or logic must be applied during or after training. Studies
which implement explicit reasoning perform slightly better, meeting 21 out of 72 goals, or 29.2% and generally
require less training data. Additionally, 4 studies implement both implicit and explicit reasoning, at a NeSy promise
rate of 40%. Of particular interest in this grouping is Bianchi et al. [63]'s implementation of Logic Tensor Networks
(LTNs), originally proposed by Sera�ni and Garcez in [68]. “LTNs can be be used to do after-training reasoning
over combinations of axioms which it was not trained on. Since LTNs are based on Neural Networks, they reach
similar results while also achieving high explainability due to the fact that they ground �rst-order logic.[63]" Also
in this grouping, Jiang et al. [61] propose a model where embeddings are learned by following the logic expressions
encoded in huffman trees to represent deep �rst-order logic knowledge. Each node of the tree is a logic expression,
thus hidden layers are interpretable.

Figure 15 shows the relationship between implicit & explict reasoning and goals, while the relationship between
knowledge representation, type of reasoning, and goals is shown in Figure 16.




	Introduction
	Background
	Reasoning & Language
	Contributions
	Out-of-distribution (OOD) Generalization
	Interpretability
	Reduced size of training data
	Transferability
	Reasoning


	Methods
	Research Questions
	Search Process
	Study selection process
	Quality Assessment

	Results, Data analysis, Taxonomies
	Exploratory Data Analysis
	Business and Technical Applications
	Type of learning
	Implicit vs Explicit Reasoning
	Linguistic and Relational Structure
	Datasets and Benchmarks

	Taxonomies: Neural, Symbolic, & NeSy
	Neural Architectures
	Symbolic Knowledge Representation
	NeSy Categories


	Discussion
	Reasoning Challenges
	Technical challenges

	Limitations & Future Work
	Conclusion
	Acknowledgements
	Appendix A.Acronyms
	Appendix B.Allowed Values
	References

