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Abstract. Most existing Arithmetic Word Problem (AWP) solvers focus on solving simple examples. Transfer-Case AWPs (TC-
AWPs) involve scenarios where objects are transferred between agents. The widely used AWP datasets mainly consist of simple
TC-AWPs (problems that involve single object-transfer). Current Large Language Models (LLMs) are capable of solving most of
these simple TC-AWPs effectively. In this work, we focus on assessing the solving capability of LLMs (chatGPT and Gemini) for
complex TC-AWPs (where multiple types of objects are transferred or more than one transfer of an object is performed). Since
the popular AWP datasets contain only simple TC-AWPs, we first generate complex TC-AWPs using an ontological approach.
We utilize these complex examples to assess LLMs’ word-problem-solving capabilities. We observe that the accuracy of LLMs
falls down rapidly as the number of object transfers is increased to 3 or 4. An approach for solving TC-AWPs using ontologies
and M/L exists in the literature. We propose an extension of this approach that can handle complex TC-AWPs and find that
compared to the current LLMs, the proposed solution gives better accuracy for complex TC-AWPs. We analyze the failed cases
of the LLM approach and find that the reasoning capabilities of LLMs need a lot of improvement.

Keywords: Arithmetic Word Problems, Ontology, Large Language Models, Reasoning, SWRL

1. Introduction

Arithmetic Word Problems (AWPs) are elementary math problems in which numbers are dispersed in the
problem-text and they can be solved by combining these numbers with basic math operations (addition, subtrac-
tion, multiplication, division). Transfer-case AWPs (TC-AWPs), a subset of AWPs, are those word problems where
problem-texts involve object transfers among agents. The popular AWP datasets such as AllArith [52], MAWPS
[22], and Dolphin [15] contain simple TC-AWPs (i.e., word problems involving a single object-transfer). Authors
[24] focused on solving simple TC-AWPs by proposing a knowledge and learning-based approach. They developed
TC-Ontology to encode domain knowledge and utilized it in the solution (i.e., automatic solver). Further, authors
[25] extended the TC-Ontology and leveraged it for checking the mathematical validity of the machine-generated
TC-AWPs. Our work extends the ideas proposed in these two approaches. The proposed work focuses on only the
AWP-Tr domain (i.e., both simple and complex TC-AWPs expressed in English). Since the existing datasets do not
contain complex TC-AWPs, we first generate such AWPs. We consider a TC-AWP complex when it involves more
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Example of Complex TC-AWP:
Stephen has 17 books and 12 pencils. Daniel has 10 books, 2 pens and 13 pencils.
Mike has 15 books. Daniel gave 12 pencils to Stephen and 8 books to Mike. Mike
gave 2 books to Stephen. How many books does Mike have now ?

Example of Simple TC-AWP:
Stephen has 17 books. Daniel has 10 books. Stephen gave 12 books to Daniel. How
many books does Stephen have now ?

Fig. 1. Examples of simple and complex TC-AWPs

than one object transfer of either single type or multiple types of objects. The examples of simple and complex
TC-AWPs are given in the Figure 1.
In the last decade, AWP solving has been widely attempted, and the state-of-the-art (SOTA) approaches have evolved
around the following ideas: rule-based solution, statistical modeling, tree-based modeling, template-based solution,
incorporating domain knowledge, neural-based models, etc [73]. With the arrival of LLMs, all these models became
less popular as LLMs could solve AWPs more effectively. Therefore, the proposed work focuses on assessing the
AWP-solving capabilities of LLMs (chatGPT-3.51 and Gemini2). We focus on the SOTA language models that pro-
vide user interfaces to interact with and are also openly available. Therefore, we exclude the SOTA LLM models
(such as- WizardMath [34], MAmmoTH [72], LLaMa-2 [61]) and non-LLM models (such as- Text2Math [66, 77]).
In this context, incorrect answers are dangerous and can mislead the users. It is assumed that a general user does
not have an idea about how to use prompts. Therefore, we assess LLMs as they are. Our assessment includes only
complex TC-AWPs. We observed that LLMs could not solve a large proportion of these examples3. A few example
TC-AWPs that LLMs could not solve are given in the Appendix B. The proposed ontology-based approach performs
better than LLMs while solving complex TC-AWPs.
Concerning the TC-AWP domain, the existing works which adopted ontology-based modeling, the solver [24] and
the validity-checker [25], focused on processing word problems sentence-wise. They identified the following four
sentence-categories: Before-Transfer (eg., Stephen has 17 books), Transfer (eg., Stephen gave 5 books to Daniel),
After-Transfer (eg., Now Daniel has 15 books), and Question (eg., How many books does Stephen have now ?).
These four sentence categories are represented as four ontology classes (details are in Section 2). The above men-
tioned systems incorporated domain knowledge by developing an ontology (namely TC-Ontology). Since the pro-
posed work leverages TC-Ontology, we include a summary in Section 2 and discuss the required extension.
In summary, the proposed work shows the importance of incorporating domain knowledge in the tasks related to the
AWP domain, such as generation and solving. Our contributions are:

1. We extend the TC-Ontology to demonstrate the generation of complex TC-AWPs from the ontological rep-
resentations of simple TC-AWPs. This process required enhancements to the ontology to accommodate the
creation of more complex problems.

2. We utilize complex TC-AWPs to evaluate the performance of LLMs in solving these problems. Furthermore,
we propose an ontological approach for solving complex TC-AWPs, which showcases enhanced reasoning
capabilities and proves to be more effective in solving these complex word problems.

The remaining article is organized as follows - Section 2 briefly discusses the Background and TC-Ontology. Section
3 details the process of generating complex TC-AWPs. Section 4 explains the proposed solver. Section 4 discusses
the experimental-setup and results. Section 6 details the related work. Limitations of the proposed approach and
conclusions of the work are given in Sections 7 and 8, respectively.

1https://chat.openai.com/ (accessed in September 2023)
2https://gemini.google.com/ (previously called Bard, accessed in Oct/Nov 2023)
3All the results used in this work are from the first run.
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2. Background and TC-Ontology

In this section, we discuss the background of ontologies. Since our proposed approach extends and utilizes the
TC-Ontology developed in previous work, we also provide a summary of that ontology.

2.1. Background

Ontology is a formal framework for representing knowledge within an application domain. It provides a struc-
tured way of modeling concepts (classes), properties (roles) that detail the attributes and relationships of these
concepts, and constraints on these properties. This structured representation facilitates consistent understanding,
interoperability, and reasoning across systems, making it crucial in fields such as artificial intelligence, the semantic
web, and information science. The Resource Description Framework Schema (RDFS) [3] and the Web Ontology
Language (OWL) [2] are two widely used frameworks for computationally processing ontologies, each differing in
their levels of expressive capabilities. The Resource Description Framework (RDF) [20] is a data modeling standard
that facilitates effective information exchange across the web with reasoning capabilities. It serves as the foundation
for building RDFS and OWL technologies. In the following, we discuss RDF, RDFS, and OWL in brief.
a) Resource Description Framework (RDF): RDF [20] serves as a foundational framework for encoding,
reusing, and exchanging structured metadata. It enables the representation of various resources within a do-
main through statements structured as triplets (subject, predicate, object). Each component of these triplets is
uniquely identified by a URI, where every Internationalized Resource Identifier (IRI) also functions as a URI.
For instance, in RDF, the statement "Stephen knows Daniel" would be expressed as <http://example.org/Stephen
http://xmlns.com/foaf/0.1/knows http://example.org/Daniel>, where the subject (Stephen’s profile), predicate (the
FOAF vocabulary indicating the relationship "knows"), and object (Daniel’s profile) are denoted by IRIs. A URI
consists of two parts: a namespace and a local-name, and it has a global scope. The namespace serves as a
fixed prefix for the URI, while the local-name represents the varying suffix-component. Each URI takes the form
namespace:local-name. Each domain’s linked URIs gets a unique namespace. In RDF, namespaces can be ab-
breviated for convenience. For instance, using abbreviations like foaf for http://xmlns.com/foaf/0.1/ and ex for
http://example.org/, we can succinctly express the earlier triplet as <ex:Stephen foaf:knows ex:Daniel>. As men-
tioned earlier, RDF serves as the foundation and it is used to build RDFS and OWL technologies.
b) Resource Description Framework Schema (RDFS): RDFS [3] is a language for describing vocabularies and
adding schema to RDF. Where, a vocabulary is a set of classes with specific properties that use the RDF data model
to provide essential elements to model a domain. It also specifies entailment-rules/axioms to infer new triples. In
essence, RDFS provides a way to create domain-specific vocabulary, often referred as minimal ontology, and can
be used to make and infer domain statements.
c) Web Ontology Language (OWL): OWL [2] is a family of semantic web languages designed to formally rep-
resent complex knowledge of an application domain. Since it is based on computational logic, computer programs
can utilize the knowledge expressed in OWL. It expands upon RDFS by introducing additional constructs for defin-
ing classes and properties, such as- cardinality constraints, disjoint classes, etc. The World Wide Web Consortium
(W3C) has standardized three variants of OWL with increasing expressive power: OWL-Lite, OWL-DL, and OWL-
Full. OWL-DL, which offers maximal expressiveness while ensuring computational completeness and decidability,
is particularly suited for our modeling purposes. Description Logics (DLs) [1] are decidable fragments of first-order
logic (FOL), and provide a logical foundation to OWL. Since, the expressive power of OWL-DL is sufficient to
model the information and the constraints required in our proposed approach, we focus on the SHOIN (D) de-
scription logic and OWL-DL. Certainly, the ontology can also be represented in OWL 2 DL format.
An OWL-DL ontology can be viewed as a pair (T , A), where T represents the Terminological Box (TBox) contain-
ing definitions of concepts and properties using vocabulary terminology. The Assertional Box (ABox), represented
by A, is used to provide the membership assertions - either as concepts or as properties and is the place where the
details of a given concrete situation (extracted from word-problem-text) in the domain are presented.
d) Semantic Web Rule Language (SWRL): SWRL [12] is a rule language for the Semantic Web which was de-
veloped to address the limitations of OWL in making assertions using properties, which are important for practical



4 S. Kumar and P.S. Kumar / Running head title

1 1

2 2

3 3

4 4

5 5

6 6

7 7

8 8

9 9

10 10

11 11

12 12

13 13

14 14

15 15

16 16

17 17

18 18

19 19

20 20

21 21

22 22

23 23

24 24

25 25

26 26

27 27

28 28

29 29

30 30

31 31

32 32

33 33

34 34

35 35

36 36

37 37

38 38

39 39

40 40

41 41

42 42

43 43

44 44

45 45

46 46

47 47

48 48

49 49

50 50

51 51

applications [12]. While OWL has significant expressive power, it lacks the capability to represent complex logic
involving properties. SWRL extends OWL with Horn-clause rules, enabling more advanced reasoning and overcom-
ing these expressive constraints. In the context of OWL-DL, DL-safe SWRL rules [36] provide feasible reasoning.
A DL-safe SWRL rule takes the form a1 ∧ a2 ∧ ... ∧ ak → ak+1 ∧ ak+2 ∧ ... ∧ an, where each ai is an atomic unit.
Theoretically, each atom represents either C(a) or P(b, c), where C denotes a class, P denotes a property, and a, b,
and c are either individuals or variables. In the TC domain, we develop and utilize SWRL rules for several purposes,
including checking the feasibility of object transfers, updating ownership of quantities after an object transfer, and
other related tasks.
e) SPARQL: The W3C has endorsed SPARQL [46] as a query language for querying RDF graphs. SPARQL allows
users to express queries across diverse data sources, whether the data is available as a native RDF graph or accessed
through middleware. SPARQL supports four types of queries: SELECT, CONSTRUCT, ASK, and DESCRIBE. In
the TC domain, we focus on SELECT queries, which are used to retrieve specific information from the RDF graph
of a TC word problem. Consequently, our discussion here is limited to SELECT queries. A SELECT query has
two main components: a list of variables to be retrieved and a WHERE clause that specifies the triple patterns to
match. In the query, variables are denoted by a “?” followed by the variable name, such as “?x”. The triple pattern
itself consists of three placeholders, each of which can be either a variable or a specific keyword, used to define the
search criteria. For example, the pattern ex:Stephen foaf:knows ?person in a SPARQL query can be used to search
an RDF graph to find all the people that Stephen knows. In the TC domain, we use SELECT-type SPARQL queries
to retrieve the information sought in the question of a TC word problem.

2.2. TC-Ontology

TC-Ontology, developed using OWL-DL, was initially proposed in the KLAUS-Tr system [24] and was reused
(after appropriate extension) in the validity-checker system [25]. In the proposed work, we reuse the extended TC-
Ontology [25] after making the appropriate changes. Authors [24] analyzed the various TC-AWPs and first devised
the vocabulary of the TC-Ontology. The summary is as follows:
Concepts/Classes: Authors treat each AWP as an individual belonging to the class Word-Problem. They propose
a categorization of the word-problem sentences into individuals belonging to the following ontology classes: Be-
foreTransfer (BT), Transfer (TR), AfterTransfer (AT), and Question (QS). BT class contains sentences that carry the
agent-quantity and associated information before the object transfer. Similarly, the AT class contains the sentences
that carry the post-transfer information. TR class has sentences that contain object-transfer information. QS class
contains the query-sentences that seek the information from the following: before-transfer facts, after-transfer facts,
or transfer being carried out. To represent the knowledge present in a sentence, the following concepts are devised:
Agent, TC-Quantity, PositiveQuantity, NegativeQuantity, etc. The specific agent, like Mike, and a specific number
in the problem text become individual members of the classes Agent and TC-Quantity, respectively.
Properties: Table 1 presents the essential properties (along with domain and range information) available in the TC-
Ontology. A domain is a concept/class to which the subject of a Resource Description Framework (RDF4) statement
using a given property belongs to, while range is the class of statement’s object (value).
In addition to concepts and properties, TC-Ontology is equipped with axioms inferring the quantities involved in the
math operations (w.r.t. the TC-AWP domain, subtraction, and addition). Appendix A presents the essential axioms
of the TC-Ontology. To solve a given AWP, KLAUS-Tr system [24] utilizes ontology inferences (made by axioms)
and semantic web rule language (SWRL) [12] rules that capture the knowledge about how object-transfer should
affect the RDF graph of the word-problem being solved.
Note that source-to-destination edge in the RDF graph can also be viewed as a triple as follows (source-individual,
edge-label, destination-individual). In the discussion below, we also use triples for ease of understanding. The RDF
graph is also referred as the ABox (refer A) in this paper. Figure 3 shows the RDF representation of a simple TC-
AWP given in Figure 1. This RDF representation utilizes the vocabulary described above. In Section 3, we show
how to use the graphical representations of the simple TC-AWPs and add more edges to the graph to obtain the rep-
resentations of the complex TC-AWPs. This section provides only necessary details of the TC-Ontology. Appendix

4https://www.w3.org/RDF/

https://www.w3.org/RDF/
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Property Domain Range
hasBT Word-Problem BT
hasTR Word-Problem TR
hasAT Word-Problem AT

hasQuestion Word-Problem QS
fromAgent TR Agent

toAgent TR Agent
hasQuant Agent TC-Quantity
hasLost Agent TC-Quantity

hasGained Agent TC-Quantity
quantValue TC-Quantity Literal
quantType TC-Quantity Literal

Table 1
Important properties devised in TC-Ontology

Agent(?a) ^ hasQuant(?a, ?q) ^ quantValue(?q, ?OldValue) ^
srwlb:add(?NewValue, ?OldValue, 5) → quantValue(?q, ?NewValue)

Fig. 2. This SWRL rule will make the ontology inconsistent

A provides more details on TC-Ontology and its use in the KLAUS-Tr [24] and OLGA [25] systems.
Why do we need to extend the TC-Ontology:
a) During the generation of complex TC-AWPs, we need to maintain the order of the sentences, therefore, we add
a new data property hasSequenceNumber. The property takes domain and range as { BT ⊔ TR ⊔ AT ⊔ QS } and
Integer, respectively. Section 3 details how the generation module utilizes the hasSequenceNumber property.
Since the KLAUS-Tr system focused on solving simple TC-AWPs (generally triggering one subtraction and one
addition), the ontology and the SWRL rules developed were sufficient. However, to solve complex TC-AWPs, the
proposed system needs to perform a sequence of reasoning steps. The SWRL rule shown in Figure 2 (developed
using the similar logic as proposed in KLAUS-Tr), to perform the sequence of reasoning, will make the ontology
inconsistent, as it will run forever and attempt to assign an infinite number of values to quantValue property. There-
fore, to perform the sequence of reasoning, we use two additional properties and the Owlready2 5 python library. In
the following, we explain the required additional properties.
1. We add hasTransferSequence data property to capture the sequence of the reasoning (i.e., sequence of the object
transfers taking place). The domain and range are TR and Integer, respectively.
2. We add hasUpdatedValue data property to capture the effect of the sequential reasoning. If value of any quantity
gets updated using an SWRL rule and it is required in the transfer that follows, it creates the sequential reasoning
situation. The domain and range are TC-Quantity and literal, respectively.
Using Owlready2, we write the updated quantity value to the ontology and rerun the reasoner to perform the rea-
soning required by the next object transfer. Section 4 details how these properties are used in the solution design.

3. Generating complex TC-AWPs

As mentioned earlier, the existing AWP datasets contain simple TC-AWPs. Therefore, we generate complex TC-
AWPs as we plan to assess the solving capabilities of LLMs over these examples. The generation process makes use
of the TC-Ontology. Authors [25] extended the TC-Ontology to check the mathematical validity of the machine-
generated TC-AWPs. Additionally, they showed a way to convert the single-transfer TC-AWPs into two-transfer
TC-AWPs. In this work, we adopt a similar idea, use the RDF representations of the simple TC-AWPs, and generate

5https://owlready2.readthedocs.io/

https://owlready2.readthedocs.io/
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tc:Q1

tc:qu
antVa

lue
17

books

tc:Agent2

tc:involvesAgent

tc:hasQuant

10books

tc:quantType

tc:quantType

tc:hasQuestion

tc:Agent1

tc:asksAbout

books

tc:asksObjType

after

tc
:in
qu
ire
sS

ta
te

tc:S4

tc:Q2

tc:hasLost

tc:hasG
ained

12

books

tc:quan
tValue

tc:Q3tc:Transfer1
tc:hasTR

tc:hasFromAgent

tc:hasToAgent

tc:transferQuantity

tc:QuantType

tc:transferTo

tc:quantValue

Transfer 1

Problem Text: Stephen has 17 books. Daniel has 10 books. Stephen
gave 12 books to Daniel. How many books does Stephen have now ?

Fig. 3. RDF representation of the simple TC-AWP (Agent1- Stephen, Agent2- Daniel). The red circle represents the factual details of the transfer.
The term tc represents the namespace of the TC-Ontology.

tc:WP

tc:hasQuestion

tc:Agent3

tc:asksAbout

books

tc:asksObjType

after

tc
:in

qu
ire

sS
ta

te

tc:S4

tc:Transfer1tc:hasT
R

tc:Transfer2
tc:hasTR

tc:Transfer3tc:hasTR

tc:Agent1

tc:Agent2

tc:Agent3

tc:hasQuant

tc:involvesAgent
tc:involvesAgent

tc:i
nvo

lve
sAg

ent

tc:hasQuant

tc:hasQuant

. . .

. . .

. . .

(Represents - Daniel gave 12 pencils to Stephen)

(Represents - Mike gave 2 books to Stephen)

(Represents - Daniel gave 8 books to Mike)

Problem Text: Stephen has 17 books and 12 pencils. Daniel has 10 books, 2 pens
and 13 pencils. Mike has 15 books. Daniel gave 12 pencils to Stephen and 8 books

to Mike. Mike gave 2 books to Stephen. How many books does Mike have now ?

Fig. 4. RDF representation of the complex TC-AWP (Agent1- Stephen, Agent2- Daniel, Agent3- Mike). To make the diagram simple and
understandable, we do not show the edges representing factual details about the object transfers and the quantities owned by the agents.

complex TC-AWPs (up to four object transfers).
Generation Process: Since TC-Ontology models transfer (of objects) as a concept, it is possible to add more indi-
viduals of this kind. For example, in the simple TC-AWP given in Figure 1, the transfer-type sentence “Stephen gave
12 books to Daniel” is an individual of the concept transfer. To generate complex TC-AWPs, first, we add more
hasTR-type and other associated edges (equivalent to adding more individuals of type “Transfer”) to the graphical
representations of the simple TC-AWPs. For example, we show a graphical representation of a complex TC-AWP
in Figure 4, which is obtained after adding edges to the graph shown in Figure 3.
The generation module takes input as ontology representation (Osi) of the simple TC-AWPs and the number of ob-



S. Kumar and P.S. Kumar / Running head title 7

1 1

2 2

3 3

4 4

5 5

6 6

7 7

8 8

9 9

10 10

11 11

12 12

13 13

14 14

15 15

16 16

17 17

18 18

19 19

20 20

21 21

22 22

23 23

24 24

25 25

26 26

27 27

28 28

29 29

30 30

31 31

32 32

33 33

34 34

35 35

36 36

37 37

38 38

39 39

40 40

41 41

42 42

43 43

44 44

45 45

46 46

47 47

48 48

49 49

50 50

51 51

Simple TC-AWP: Stephen has 17 books (BT). Daniel has 10 books (BT). Stephen
gave 12 books to Daniel (TR). How many books does Stephen have now ? (QS)
RDF triple representation of the above problem (*):

Triples extracted from BT-type sentences 

<tc:Stephen tc:hasQuant tc:Q1> 
<tc:Q1 tc:quantValue 17> 

<tc:Q1 tc:quantType book> 

<tc:Daniel tc:hasQuant tc:Q1> 
<tc:Q1 tc:quantValue 10> 

<tc:Q1 tc:quantType book> 

Triples extracted from TR-type sentence 

<tc:AWP tc:hasTR tc:TR1> 
<tc:TR1 tc:hasFromAgent tc:Stephen> 

<tc:TR1 tc:hasToAgent tc:Daniel> 
<tc:TR1 tc:transferQuantity tc:Q3> 

<tc:Q3 tc:quantValue 12> 
<tc:Q3 tc:quantType book> 

* triples representing the QS type sentence are not shown

Addition of the following RDF triples (showing 2nd transfer) to the above set
After first transfer, Stephen and Daniel have 5 books and 22 books, respectively.

<tc:AWP tc:hasTR tc:TR2> 
<tc:TR2 tc:hasFromAgent tc:Daniel> 

<tc:TR2 tc:hasToAgent tc:Mike> 
<tc:TR2 tc:transferQuantity tc:Q4> 

<tc:Q4 tc:quantValue 20> 
<tc:Q4 tc:quantType book> 

Above tripes represent - Daniel gave 20
books to Mike (valid transfer)

<tc:AWP tc:hasTR tc:TR2> 
<tc:TR2 tc:hasFromAgent tc:Daniel> 

<tc:TR2 tc:hasToAgent tc:Mike> 
<tc:TR2 tc:transferQuantity tc:Q4> 

<tc:Q4 tc:quantValue 30> 
<tc:Q4 tc:quantType book> 

Above tripes represent - Daniel gave 30
books to Mike (invalid transfer) 

Fig. 5. How the generated TC-word-problems can become invalid

ject transfers expected (Ntr) in the generated word problems. si represents the ith simple TC-AWP. First, we generate
triples representing additional BT-type sentences as they are required to create an appropriate context for multiple
object transfers. This additional BT-type sentence(s) will introduce a new agent and maybe a new object type (if
the existing scenario has only one object). We generate up to two new BT-type sentences (depending on how many
BT-type sentences exist in the simple TC-AWP). We ensure that the generated problems contain three BT-type sen-
tences. Based on the value of Ntr, the proposed system generates triples representing an additional object transfer(s).
The total additional triples (TA), that is- triples of BT-type and TR-type sentences, are then accumulated with the
“triples of simple TC-AWP (T (Osi))” and are taken into T (Oci), which is a triple representation of the complex
TC-AWP. ci represents the ith complex TC-AWP.
Generating triples of BT-type sentence: A BT-type sentence (e.g., Stephen has 12 books) requires one agent-name
string, a number, and one object-type string. We extract ‘agent-names and object-types’ information from the prob-
lem texts of simple TC-AWPs. The agent-name string and the number can be randomly initialized. However, se-
mantic similarity checking (w.r.t. the existing object-type strings) is required to assign the object-type string. We
utilize the spaCy6 library and choose the string that is most semantically similar to the existing object-type strings
(which exist in the problem text of the simple TC-AWP). For instance, a complex TC-AWP generated from a simple
TC-AWP (which talks about books and pens) should omit new object types like cars, bikes, etc.
Generating triples of TR-type sentence(s): Our approach utilizes the structural information obtained from the triples
of the first transfer and ABox information (such as agent-names object-type) available in the ontology and generates
triples of the additional transfer. Note that the information about the number of quantities held by the agents (in-
volved in the additional transfer) is available in the existing graph; therefore, the quantity for the additional TR-type
sentence is generated appropriately.
The sentences belonging to the simple TC-AWPs are available as annotations in the ontology. We convert the ad-
ditionally generated triples into sentences using a template-based program script. We use one template for each
sentence-category. Note that, the sequence numbers of the sentences belonging to the “simple TC-AWPs” are
learned at the preprocessing stage and maintained in the ontology. However, these sequence numbers are adjusted

6https://github.com/explosion/spaCy

https://github.com/explosion/spaCy
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P1:AWP(?wp1) ^ 
P2:hasTR(?wp1, ?tr1) ^ 
P3:fromAgent(?tr1, ?ag1) ^
P4:toAgent(?tr1, ?ag2) ^
P5:involvesTRQuantity(?tr1, ?qtr1) ^  
P6:quantType(?qtr1, ?t1) 

→

P7:TR(tr2) ^ 
P8:hasTR(?wp1, tr2) ^ 
P9:fromAgent(tr2, agent3) ^ 
P10:toAgent(tr2, agent1) ^ 
P11:involvesTRQuantity(tr2, qtr2) ^ 
P12:quantValue(qtr2, 12) ^ 
P13:quantType(qtr2, ?t1)

The LHS of the rule examines the structure and information of the existing transfer using various
predicates from the domain vocabulary. The RHS of the rule adopts a similar structure and initializes the
information for the second transfer. 

Fig. 6. SWRL rule showing the generation of additional object-transfer

once new sentences are generated. Newly generated BT-type sentence is placed at the beginning and TR-type sen-
tence(s) is/are placed after the existing TR-type sentence. Finally, we arrange all the sentences using the value of
hasSequenceNumber property and form the complex TC-AWPs.
Quality of the generated examples: The existing approaches use the following measures to assess the quality of
the generated examples: a) Language Quality Measures: DL-based approaches primarily follow the idea of “predict
the next word given the previous few words,” and for assessing the quality of the generated text, they adopt metrics
such as BLEU-4 [40], METEOR [27], and ROUGE-L [31], etc. Since the proposed approach is ontology-based
and does not generate word-by-word text, we do not use the above metrics. However, we focus on another measure
to assess the quality, i.e., checking mathematical validity. b) Mathematical Validity Measure: As mentioned in the
introduction section, a generated problem is considered valid if it consists of sufficient information to answer the
posed question. We primarily focus on the mathematical validity aspect which is discussed in the following.
The generated problems are valid: As previously discussed, the information extracted from the simple TC word
problems (which are all valid) is represented as an RDF graph (i.e., the ABox of the ontology). To generate complex
TC word problems, the ontological representation of a word problem needs to be expanded. This expansion involves
adding more triples to represent additional BT and TR types of sentences. The generated problems are grammati-
cally correct because the newly created sentences are template-driven. Additionally, the structure of existing triples
is used to generate new, similar triples. Our generation process is supported by a domain ontology, ensuring that
every generated example is valid by leveraging the structural information from the existing triples. To ensure the
problem is also mathematically correct, we generate appropriate quantities for BT and TR types of sentences. Con-
sequently, the new edges (i.e., triples) representing an additional object transfer involve only feasible object-transfer
scenario. We show a conceptual illustration in Figure 5. Also, in Figure 6, we show how to generate triples denoting
an additional object-transfer by leveraging information from existing triples.

4. Solving complex TC-AWPs

Algorithm 1 shows the pseudo-code of the proposed solver. It takes input as TC-Ontology O and ith complex TC-
AWP (WPi). Split-Sentences() function (line 4) splits the word problem sentences and stores them in the set S. The
classifier (line 6) takes each word problem sentence and predicts the class label (i.e., BT, TR, AT, or QS). Text clas-
sification module achieves 100% accuracy as we use: a) OpenAI API, which provides integration of powerful LLMs
with Scikit-learn library. We leveraged the Zero-shot text classifier with OpenAI model gpt-3.5-turbo. b) Sentences
belonging to the four categories mentioned above have different structures, and sufficient examples are available for
training the classifier. Based on the type (label) of the sentence, the system first extracts relevant information from
the sentences and populates it into the RDF graph (also called, ABox). This information involves the details about
the agents and the quantities they own, the fine details about a transfer (such as who is losing, who is gaining, the
exact amount of the quantity, etc.), and what is asked in the question. Pop-Onto() is a BERT-based language model
trained to pick sentence-parts (agent names etc.) from the word problem text. For ABox extraction from simple
TC-AWPs, OLGA [25] trained and deployed BERT-based language models (one for each sentence category). Since
the number of sentence-categories are same in the simple and complex problems, we adopt the BERT-based model
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Algorithm 1 : Solving complex TC-AWPs
1: Input: Onto. O, WPi ▷WPi: ith complex TCAWP
2: S i = {} ▷ normal sentences of WPi

3: Ci = {} ▷ class-labeled sentences of WPi

4: S ← Split-Sentences(WPi) ▷ Let S have k sentences
5: for iteration j = 0, 1, 2, . . . , k − 1 do
6: Ci ← Classifier(S i j) ▷ S i j : jth sentence in WPi

7: end for
8: Oi ← Pop-Onto(Ci , O) ▷ populates ABox
9: for iteration l = 1 to n do ▷ n = #transfers

10: Oil ← Sync-Reasoner(Oi(l−1), SWRL-Rule(l))
11: end for

Rule
P1: TR(?tr) ^  
P2: hasTransferSequence(?tr, l ) ^  
P3: hasFromAgent(?tr, ?ag1) ^  
P4: hasToAgent(?tr, ?ag2) ^  
P5: hasTRQuantity(?tr, ?trq) ^  
P6: hasQuant(?ag1, ?q1) ^  
P7: quantValue(?q1, ?v1) ^  
P8: quantType(?q1, ?t1) ^  
P9: hasQuant(?ag2, ?q2) ^  
P10: quantValue(?q2, ?v2) ^  
P11: quantType(?q2, ?t2) ^  
P12: quantValue(?trq, ?trqv) ^  
P13: quantType(?trq, ?trqt) ^  
P14: swrlb:equal(?t1, ?t2) ^ 
P15: swrlb:equal(?t1, ?trqt) ^ 
P16: swrlb:subtract(?vs, ?v1, ?trqv) ^ 
P17: swrlb:add(?va, ?v2, ?trqv)  
              → 
P18: hasUpdatedValue(?q1, ?vs) ^  
P19: hasUpdatedValue(?q2, ?va)

 swrlb:subtract(x, y, z) in P14 means x = y - z
swrlb:add(x, y, z) in P15 means x = y + z

Explanation
In antecedent, predicate P1
checks the existence of an
object transfer and P2
checks in which sequence it
is happening. Predicates P3
to P13 check the details of
the object-transfer such as
agents involved, quantity,
value and type information,
etc. Predicates P14 and P15
check whether the units of
the quantities match. In
consequent, predicates P18
and P19 write the updated
values of the quantities
owned by the agents
involved in the transfer.

Fig. 7. SWRL rule to affect object transfer

proposed in OLGA and leverage it for extracting ABox information from the problem texts of complex TC-AWPs.
Compound sentences (such as- Stephen has 5 books and 10 pens) are converted into two simple sentences using
subject distribution at the preprocessing stage.
We develop the SWRL rule to perform reasoning in multiple object transfer situations. The value of the hasTrans-
ferSequence property (that is, l) represents the sequence of the object transfer. Figure 7 presents the SWRL rule and
its explanation. Oil represents the ontology state after the lth transfer. We leverage Pellet ontology reasoner [56] in
our solution. We place a SPARQL query (based on what the question sentence asks) once the Oil is updated after
the nth object transfer.

5. Experimental Setup and Results

The necessary sub-tasks of this work are sentence classification and information extraction (i.e., ontology ABox)
from sentences (based on the type of a sentence). Both these sub-tasks are used while generating and solving com-
plex TC-AWPs. We discussed sentence classification in Section 4. In this Section, we discuss results of the ABox
extraction and word-problem-solving.
We conducted experiments on a Mac-OS system with a 16GB RAM and Apple M1 processor. We used Google-
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colab7 services for integrating powerful LLMs such as GPT-3.5 into Scikit-learn8 library for enhancing the perfor-
mance of sentence-classification task. For ABox extraction, we use BERT-based language models. We use Python
and Protégé9 for ontology development/editing.
Since, the proposed approach is different from a typical ML/DL system, we provide details about reproducing the
results in the Appendix C.

5.1. Dataset

We use the dataset AllArith-Tr [24], which contains simple TC-AWPs, and generate the complex TC-AWPs
using the proposed ontological approach. We used only 200 problems (50 for each Ntr value, see Figure 8) for
the assessment, as responses from the LLMs were manually inspected for checking NLU/reasoning failures (see
Section 5.3). The average word counts are as follows: 44 (when Ntr = 2), 56 (when Ntr = 3), 63 (when Ntr =

4). The proposed system can convert a simple TC-AWP into a complex TC-AWP. Therefore, the total number of
the complex-TC-AWPs the proposed system can generate depends on the number of simple-TC-AWPs given in the
input.

5.2. ABox extraction

As mentioned in Section 4, we use BERT-based language models for extracting the ABox information for TC-
Ontology (the idea was proposed by OLGA [25]). OLGA used 2K TC-AWP (these word problems included single
object transfer only) sentences for training and achieved 76% ABox prediction accuracy (i.e., for 76% of TC-AWPs,
ABox was extracted correctly). However, increasing the number of object transfers results in a longer problem text,
which lowers the prediction accuracy of ABox. In Algorithm 1, we name the ABox prediction task PopOnto(), as
the proposed system needs to populate the ABox into the ontology once it has extracted the information from the
word problem text. On complex TC-AWPs, we achieve the following accuracy: 72%(#object-transfers=2), 66%
(#object-transfers=3), and 58% (#object-transfers=4). Note that, given a correct ABox, an ontology-based solver
always does the correct reasoning, provided domain knowledge is also encoded appropriately.

5.3. Solving complex TC-AWPs

The results (Figure 8) show that as we increase the complexity of the examples, the solving-accuracy of LLMs
drops drastically; however, the proposed approach continues to perform well as it leverages domain knowledge
while solving.
Analyzing Gemini and chatGPT results: We compare the results based on two aspects- Natural Language Under-
standing (NLU) and mathematical reasoning. We analyze the responses generated by LLMs for mainly semantics
and pragmatic aspects. For the failed cases (examples for which LLMs gave wrong answers), chatGPT always pro-
cesses the problem text appropriately; however, it could not perform the correct reasoning. In contrast, Gemini could
not correctly “understand” the problem text in approximately 34% (average over Ntr = 2, 3, and 4) of the failed
cases, leading to incorrect reasoning. We inspected the responses of LLM systems manually to arrive at these values.
Moreover, both the LLMs gave different answers over different runs for the failed cases. Interpretation of the results
in Table 2 is as follows: the first row shows that for Ntr = 2, Gemini failed to understand the problem text in 22.22%
of cases, while reasoning alone led to failure in the remaining 77.77%.

7https://colab.research.google.com/
8https://github.com/iryna-kondr/scikit-llm
9https://protege.stanford.edu/

https://colab.research.google.com/
https://github.com/iryna-kondr/scikit-llm
https://protege.stanford.edu/
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Fig. 8. Comparing accuracy-of-solving of the proposed system w.r.t. LLMs. Ntr represents number of object transfers in TC-AWPs.

Table 2
Gemini vs chatGPT - we analyze the failed cases (examples for which LLMs gave wrong answers) and report what percentage of these examples
were failed due to NLU and reasoning.

Ntr
failing at NLU failing at reasoning

Gemini chatGPT Gemini chatGPT

2 22.22 0 77.77 100
3 35.48 0 64.51 100
4 42.10 0 57.89 100

6. Related Work

In the proposed work, we focus on both the generation and solving aspects of TC-AWPs. Various approaches
have been proposed in the literature for solving word problems; however, the generation aspect of word problems is
not widely attempted.

6.1. Approaches for AWP Generation

The work [70] proposes a prototype to convert OWL ontologies into word problems. The approach uses the SWAT
[49] tool to convert the lexical entries into English statements. For example, the property ‘hasType’ is converted to
‘is a kind of’ natural language text. The generated sentences are then grouped together to form a word problem
text. Authors [44] use answer set programming (ASP) to generate word problem text from student and teacher
requirements. The work [23] proposes a theme-rewriting approach for generating algebra math word problems. The
drawback of the approach is that it requires another word problem as an input, resulting in the new problem having
a similar template to the input.
The neural network-based approach [75] generates word problems from equations and topics. Two RNN encoders
map equations and topics to hidden-vectors and word-representations, respectively. Outputs of these two encoders
are then concatenated and fed to a decoder to generate word problems. The method requires a large amount of
annotated data. Authors state that the following two types of errors are observed in the generated examples: a)
Problem soundness- generated examples lack semantic coherence and b) Equation matchness- template of the input
equation partially correlates to the output. However, they do not mention the proportion of such examples. Given
an equation-template: z = x − y and topic-words: {has, apples, gave}, the system may generate the following word
problem: “’Stephen has 5 apples. He gave 10 apples to Mike. How many apples does Stephen have now ?’. In
KLAUS-Tr system [24], authors define the above problem as invalid, as one can not give more than one owns. The
neural network-based work does not mention how appropriate domain knowledge is provided to the system.
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Attempts has been made towards how to utilize commonsense-knowledge [32, 47] and improve mathematical-
validity [68] during generation. Multilingual language models for word problem generation are also being explored
[39].
Our proposed work generates word problems related to a specific topic, that is transfer-type AWPs. It takes input as
simple TC-AWPs and generates complex TC-AWPs. Like other learning-based approaches, our approach does not
require additional training examples and annotations. Since the generation process is backed by domain knowledge,
the generated word problems are always valid.

6.2. Approaches for AWP Solving

Before the LLM era, the following were the popular SOTA AWP-solvers: [52, 53, 64, 66, 77]. We skip the
discussion on these solvers as we primarily focus on analyzing the AWP-solving capabilities of LLM-based solvers.
Authors [69] adopt and test the idea of chain-of-thought prompting in LaMDA [60], GPT-3 [4], PaLM [8], UL2 20B
[59] and Codex [5] LLMs to improve the arithmetic reasoning. Word problem solving ability of LLMs is highly
dependent on how well the prompts are designed [55]. Since we assess Gemini and chatGPT LLMs as they are,
we do not discuss the design of the prompts and also exclude the detailed discussion on prompt-based solutions.
However, it appears that the current versions of LLM’s we have tested already incorporated chain-of-thought prompt
based training. In the output we obtained on sample cases, intermediate statements were generated by the model
before the final answer is given. In spite of this, the results on complex problems are not very good. The proposed
approach provides a simple solution to this challenging problem (i.e., performing a series of intermediate reasoning
steps effectively).
Authors [76] focused on solving math word problems using the GPT-3 model. They focused on analyzing the
following three tasks using the GPT-3 model: classifying word problems, extracting equations from the problem
text, and generating similar word problem using one given example. The work shows promising results for all
these three tasks mentioned above. However, the paper states that directly applying commonsense knowledge to
improve word-problem solving remains an issue. Also, scaling up the model size alone seems to be not sufficient
for achieving high performance on the reasoning tasks (i.e., arithmetic, commonsense, symbolic) [48]. Therefore,
the domain knowledge-based solutions should be explored further. In the proposed work, we show how to encode
and utilize domain knowledge while solving word problems.

7. Limitations of the proposed approach

While encoding and utilizing domain knowledge offers several advantages, it also presents some limitations. Dur-
ing the generation process, the encoded domain knowledge ensures the creation of mathematically valid examples.
However, because the proposed system converts ontology triples (as part of the solution) into English text using
predefined templates, language-diversity may be diminished. Addressing this limitation will be a focus of our future
work. Another potential limitation is the extension of the proposed approach to other types of arithmetic word prob-
lems (AWPs). This would require the development of a separate ontology for the target domain. Nonetheless, the
machine learning (ML) and deep learning (DL) based sub-modules of solution are adaptable and can be extended
to other types of AWPs.

8. Conclusions

We investigate the effectiveness of large language models (LLMs) in solving complex transfer-case arithmetic
word problems (TC-AWPs). Although the latest state-of-the-art LLMs, such as ChatGPT and Gemini, demonstrate
remarkable proficiency in comprehending natural language, they encounter significant difficulties when it comes
to solving these complex TC word problems. To address these challenges, we employ a strategy that incorporates
domain knowledge, which is encoded through domain ontology and Semantic Web Rule Language (SWRL) rules.
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This approach not only aids in generating valid complex-word-problems (from ontological representation of sim-
ple problems) but also helps in effectively solving these complex examples. The ontology-based modeling proved
effective in tackling complex word problems. The idea of utilizing domain knowledge can be extended to more
sophisticated and challenging domains.
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Fig. 9. ABox extracted from an example word problem

Appendix A. TC-Ontology : details and its use in KLAUS-Tr and OLGA systems

An ontology is a structured representation of knowledge that defines the concepts within a specific domain and the
relationships between them. Ontologies typically consist of classes (representing concepts or categories), properties
(depicting relationships between classes), and instances (individual members of classes). By organizing information
in a hierarchical and interconnected manner, ontologies facilitate better knowledge management, interoperability,
and reasoning about the entities and their interactions within a given domain.
Two major components of an ontology are the Terminological Box (TBox) and the Assertional Box (ABox). The

TBox defines the vocabulary, concepts, and their relationships within a specific domain, establishing a structured
framework for understanding and representing knowledge. The ABox, on the other hand, captures instances and
specific data related to those instances, providing a means to describe individual objects and their properties within
the defined concepts. These components together form a comprehensive ontology, facilitating effective knowledge
representation and sharing.
Axioms are logical statements of TBox that say what is true in an application domain. In the following, we mention
the important axioms devised for TC-AWP domain. Here, A.01 to A.04 are concept inclusion axioms, whereas A.05
and A.06 are concept equivalence axioms.
A.01: ∃ hasQuant. TC-Quantity ⊑ Agent
(Anyone who owns a TC quantity is an agent)
A.02: TC-Quantity ⊑ PositiveQuantity
(Every TC quantity is a positive quantity)
A.03: MinuendQuantity ⊑ TC-Quantity
A.04: SubtrahendQuantity ⊑ TC-Quantity
A.05: MinuendQuantity ≡ (TC-Quantity ⊓

∃ isOwnedBy. Agent)
(A.05 expresses “Minuend quantity is a TC quantity that is owned by an agent”)
A.06: SubtrahendQuantity ≡ (TC-Quantity ⊓

∃ isGainedBy. Agent ⊓ ∃ isLostBy. Agent)
(A.06 expresses “Subtrahend quantity is a TC quantity that is gained by an agent and lost by an agent”)
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Note that the properties isOwnedBy, isGainedBy and isLostBy are inverse-properties of the object-properties
hasQuant, hasGained and hasLost, respectively. Axioms A.05 and A.06 infer the minuend and subtrahend quan-
tities of a subtraction operation, respectively.
In Section 2, we presented a summary of the vocabulary of the TC-Ontology and some important axioms are men-
tioned above. The detailed information of the TC-Ontology is available in KLAUST-Tr [24]. Both KLAUS-Tr and
OLGA systems process word problems sentence-wise. Based on the type of a sentence, these systems extract im-
portant information and populate the Ontology ABox. An example ABox extracted from a word problem is given
in Figure 9. In contrast, P1 represents an example word problem. Q1, Q2, and Q3 represent quantities and T1 repre-
sents the transfer. The data property assertions for quantities Q1, Q2, and Q3 (using the quantValue and quantType
data properties) are straightforward and thus not shown.

Appendix B. Solving complex TC-AWPs with ChatGPT and Gemini

The results on an example TC-AWP involving three object transfers are given below:

Q1. Mike has 14 cars and 22 bikes. John has 10 bikes and 2 cars. Jane has only 5 bikes. John gave 2 bikes to
Jane and took 5 cars from Mike. John gave 2 bikes to Jane. How many bikes does John have now ?

Correct Answer: 6
(Both ChatGPT and Gemini gave answer as 8)

Response by chatGPT:



S. Kumar and P.S. Kumar / Running head title 19

1 1

2 2

3 3

4 4

5 5

6 6

7 7

8 8

9 9

10 10

11 11

12 12

13 13

14 14

15 15

16 16

17 17

18 18

19 19

20 20

21 21

22 22

23 23

24 24

25 25

26 26

27 27

28 28

29 29

30 30

31 31

32 32

33 33

34 34

35 35

36 36

37 37

38 38

39 39

40 40

41 41

42 42

43 43

44 44

45 45

46 46

47 47

48 48

49 49

50 50

51 51

Response by Gemini:

The results on an example TC-AWP involving four object transfers are given below:

Q2. Jill picked 34 seashells from the beach and Jane picked 78 seashells. They visited Tim’s house and Jill gave 13
seashells to Tim. Initially Tim had 45 seashells. Jane gave 45 seashells to Tim. Next day, Jill took 23 seashells from
Tim and Jane gave 12 seashells to Tim. How many more seashells does Tim have than Jane ?

Correct Answer: 71
(Gemini and ChatGPT gave answers 14 and 21, respectively)
Response by Gemini:
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Response by chatGPT:

Appendix C. Reproducing the results

Note that implementation of the proposed system is different from a typical ML/DL model. There are three key
components of the proposed system: A) Sentence Classification: we use zero-shot text classification with OpenAI
gpt-3.5-turbo model, B) Extract important information from the word problem sentences - we use BERT-based
language models, and C) Ontology editor - we use Protégé tool and Owlready2 python library.
The overall process-flow of the proposed solver is: The sentences of the word problem at hand are labeled using
the sentence-classification-module. We deploy BERT-based LMs (we use the architecture proposed by the OLGA
system) to extract important information from the sentences (based on the labels). This information is populated
into Ontology using the Owlready2 python library (populating the Assertional-Box (ABox) of Ontology). A domain
ontology has two components: Terminological-Box (TBox) and Assertional-Box (ABox). Using the Protégé tool,
we encode the domain knowledge about transfer-type word problems (TBox of the Ontology). To solve a given word
problem, we utilize the encoded domain knowledge, ABox information, and semantic web rule language (SWRL)
rules (we develop these rules and make them available inside the ontology, under SWRL Tab) that update the state
of the ontology (i.e. computes the effects of the object transfer). Therefore, building two splits (train and test) are
relevant to the components/modules (A) and (B) only, which are similar to the modules used in the existing systems
KLAUS-Tr [24] and OLGA [25], respectively. Therefore, we skip these details.
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